- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cuellar‐Gempeler, Catalina (2)
-
Bittleston, Leonora S. (1)
-
D'Andrea, Rafael (1)
-
Frans, Veronica F. (1)
-
Khattar, Gabriel (1)
-
Koffel, Thomas (1)
-
Mason, Olivia U. (1)
-
Miller, Thomas (1)
-
terHorst, Casey P. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The spatial distribution of predators can affect both the distribution and diversity of their prey. Therefore, differences in predator dispersal ability that affect their spatial distribution, could also affect prey communities. Here, we use the microbial communities within pitcher plant leaves as a model system to test the relationship between predator (protozoa) dispersal ability and distribution, and its consequences for prey (bacteria) diversity and composition. We hypothesized that limited predator dispersal results in clustered distributions and heterogeneous patches for prey species, whereas wide predator dispersal and distribution could homogenize prey metacommunities. We analyzed the distribution of two prominent bacterivore protozoans from a 2‐year survey of an intact field ofSarracenia purpureapitcher plants, and found a clustered distribution ofTetrahymenaand homogeneous distribution ofPoterioochromonas. We manipulated the sources of protozoan colonists and recorded protozoan recruitment and bacterial diversity in target leaves in a field experiment. We found the large ciliate,Tetrahymena, was dispersal limited and occupied few leaves, whereas the small flagellatePoterioochromonaswas widely dispersed. However, the bacterial communities these protozoans feed on was unaffected by clustering ofTetrahymena, but likely influenced byPoterioochromonasand other bacterivores dispersing in the field. We propose that bacterial communities in this system are structured by a combination of well dispersed bacterivores, bacterial dispersal, and bottom‐up mechanisms. Clustered predators could become strong drivers of prey communities if they were specialists or keystone predators, or if they exerted a dominant influence on other predators in top‐down controlled systems. Linking dispersal ability within trophic levels and its consequences for trophic dynamics can lead to a more robust perspective on trophic metacommunities.more » « less
-
D'Andrea, Rafael; Khattar, Gabriel; Koffel, Thomas; Frans, Veronica F.; Bittleston, Leonora S.; Cuellar‐Gempeler, Catalina (, Ecology Letters)Abstract The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels (‘positive BEF’) is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer‐resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data.more » « less
An official website of the United States government
